Use this URL to cite or link to this record in EThOS:
Title: Intelligent X-ray imaging inspection system for the food industry
Author: Amza, Catalin Gheorghe
ISNI:       0000 0001 3419 9108
Awarding Body: De Montfort University
Current Institution: De Montfort University
Date of Award: 2002
Availability of Full Text:
Access from EThOS:
Access from Institution:
The inspection process of a product is an important stage of a modern production factory. This research presents a generic X-ray imaging inspection system with application for the detection of foreign bodies in a meat product for the food industry. The most important modules in the system are the image processing module and the high-level detection system. This research discusses the use of neural networks for image processing and fuzzy-logic for the detection of potential foreign bodies found in x-ray images of chicken breast meat after the de-boning process. The meat product is passed under a solid-state x-ray sensor that acquires a dual-band two-dimensional image of the meat (a low- and a high energy image). A series of image processing operations are applied to the acquired image (pre-processing, noise removal, contrast enhancement). The most important step of the image processing is the segmentation of the image into meaningful objects. The segmentation task is a difficult one due to the lack of clarity of the acquired X-ray images and the resulting segmented image represents not only correctly identified foreign bodies but also areas caused by overlapping muscle regions in the meat which appear very similar to foreign bodies in the resulting x-ray image. A Hopfield neural network architecture was proposed for the segmentation of a X-ray dual-band image. A number of image processing measurements were made on each object (geometrical and grey-level based statistical features) and these features were used as the input into a fuzzy logic based high-level detection system whose function was to differentiate between bones and non-bone segmented regions. The results show that system's performance is considerably improved over non-fuzzy or crisp methods. Possible noise affecting the system is also investigated. The proposed system proved to be robust and flexible while achieving a high level of performance. Furthermore, it is possible to use the same approach when analysing images from other applications areas from the automotive industry to medicine.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available