Use this URL to cite or link to this record in EThOS:
Title: Aspects of structural design with glass
Author: Porter, Mark
ISNI:       0000 0001 2409 9349
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2001
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Glass is being increasingly used as a structural material. In particular, its favourable aesthetic qualities have made it popular with modern designers. The most recent developments have seen glass being used as major structural elements such as beams and columns. From the engineering viewpoint these new applications present a series of design problems which need to be addressed before a coherent and safe design philosophy can be achieved. To date there has been much work on out-of-plane loading of glass, and in-plane loading of traditional materials is well described. However, there is little published advice on design for long term, in-plane loading of glass. In reality engineers have been borrowing design concepts from the two former areas to try and satisfy the latter. In this thesis it is demonstrated that this is not satisfactory, and a new “Crack Size Design” method is proposed. Novel contact and fracture mechanics techniques are developed in the course of this thesis, which may also be applied to more general engineering problems. Of particular interest is the evaluation of the stress intensity factors for closed edge cracks in a half plane, and a description of their growth in a bulk compressive stress field. These techniques are used in an investigation of contact loading. Contact stresses are particularly important to glass design as glass is unable to flow plastically to relieve high local stresses. Hence “soft” interlayers are often inserted between the glass and the contacting material to facilitate stress redistribution. The problem of a rigid, square-ended punch loading glass via a perfectly linear elastic or rigid plastic interlayer is analysed. The results for an edge crack under such loading conditions are then investigated and incorporated into the newly derived Crack Size Design philosophy.
Supervisor: Hills, D. A. ; Houlsby, G. T. Sponsor: Pilkington plc ; British Glass Education Trust ; Overseas Research Students Awards Scheme (ORS) ; University of Oxford Bursary Scheme ; Kinhill Engineers
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Engineering & allied sciences ; Civil engineering ; Structural engineering ; glass