Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393110
Title: Boundary element analysis of cracks in shear deformable plates and shells
Author: Dirgantara, Tatacipta
ISNI:       0000 0001 1654 6161
Awarding Body: Queen Mary University of London
Current Institution: Queen Mary, University of London
Date of Award: 2000
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis presents new boundary element formulations for solution of bending problems in plates and shells. Also presented are the dual boundary element formulations for analysis of crack problems in plates and shells. Reissner plate theory is adopted to represent the bending and shear, and two dimensional (2-D) plane stress is used to model the membrane behaviour of the plate. New set of boundary element formulations to solve bending problems of shear deformable shallow shells having quadratic mid-surface is derived based on the modified Reissner plate and two dimensional plane stress governing equations which are now coupled due to the curvature of the shell. Dual Boundary Element Methods (DBEM) for plates and shells are developed for fracture mechanics analysis of structures loaded in combine bending and tension. Five stress intensity factors, that is, two for membrane and three for bending and shear are computed. The JIntegral technique and Crack Surface Displacements Extrapolation (CSDE) technique are used to compute the stress intensity factors. Special shape functions for crack tip elements are implemented to represent mom accurately displacement fields close to the crack tip. Crack growth processes are simulated with an incremental crack extension analysis. During the simulation, crack growth direction is determined using the maximum principal stress criterion. The crack extension is modelled by adding new boundary elements to the previous crack boundaries. As a consequence remeshing of existing boundaries is not required, and using this method the simulation can be effectively performed. Finally, a multi-region boundary element formulation is presented for modelling assembled plate-structures. The formulation enforces the compatibility of translations and rotations as well as equilibrium of membrane, bending and shear tractions. Examples are presented for plate and shell structures with different geometry, loading and boundar-y conditions to demonstrate the accuracy of the proposed formulations. The results obtained are shown to be in good agreement with analytical and other numerical results. Also presented are crack growth simulations of flat and curved panels loaded in combine bending and tension. The DBEM results are in good agreement with existing numerical and experimental results. Assembled plate-structure and a non-shallow shell bending problems are also analysed using a multi-region formulation developed in this thesis.
Supervisor: Not available Sponsor: PT Industri Pesawat Terbang Nusantara, Bandung, Indonesia
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.393110  DOI: Not available
Keywords: Engineering ; Reissner plate theory ; Dual Boundary Element Methods ; Crack Surface Displacements Extrapolation
Share: