Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374483
Title: Measurement of some radiative properties of solar absorber materials
Author: De Silva, A. A.
ISNI:       0000 0001 3420 6419
Awarding Body: Open University
Current Institution: Open University
Date of Award: 1986
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This work describes, (i) the designing and building of two sets of apparatus, namely a Liquid Nitrogen Cooled Ditectional Emissometer and a Laser-source Spectral Bidirectional Reflectometer (ii) measurements using the above apparatus on Solar selective absorber (Maxorb, Cusorb, Skysorb, Solarcoat- 100), non-selective absorber (Nextel, Solarcoat-50) and metal (Al, Cu and brass) samples. The emissometer incorporates liquid nitrogen cooling of the sample chamber thus reducing the error due to emission from the surroundings and extending the working range of sample temperature down to about 273 K. This instrument also uses a beam chopper with a phase sensitive detection system, and a Golay-cell detector. The overall error in the emittance values measured is estimated to be ± 5%. Using the emissometer all the samples in (ii) above were studied. The directional emittance behaviour of the metals and the non-selective absorbers agree well with theoretical predictions and with measurements made by other workers. In the case of the solar selective absorbers however, a peak in the directional emittance at 20°-30° reported by Hutchins (1979) is not seen in any of the present measurements. It is suggested that the ∈/∈'(0°) vs. ∈'(0°) plot can be used in comparing the emittance properties of solar selective absorbers with their substrate metals. The bidirectional reflectometer incorporates a novel device for mounting, positioning and orienting both the sample and the detector (Sample and Detector Assembly - SDA). The relatively small dimensions of this device compared with that of other bidirertional reflectometers reported makes it convenient to use and also allows it to be housed within a light-tight enclosure that minimizes problems with stray light. Extensive measurements have been made using laser sources at λ - 633 nm and λ - 1152 nm on the same set of samples of solar absorbers (selective and non-selective) studied with the emissometer. Comparison of the bidirectional reflectance characteristics of the solar selective absorbers shows marked differences between the materials. However certain features common to 'specularly' reflecting materials and others common to 'diffusely' reflecting materials have been identified. Materials like Cusorb and Solarcoat-lOO show a combination of these. Some of these features are discussed in terms of the surface microstructure data obtained using a scanning electron microscope and a conventional stylus type instrument.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.374483  DOI: Not available
Keywords: Solar energy
Share: