Use this URL to cite or link to this record in EThOS:
Title: Further studies of the visually evoked subcortical potential in man
Author: Dhanesha, Usha
ISNI:       0000 0001 3423 2342
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1986
Availability of Full Text:
Access from EThOS:
Access from Institution:
The Visually Evoked Subcortical Potential, a far-field signal, was originally defined to flash stimulation as a triphasic positive-negative-positive complex with mean latencies of P21 N26.2 P33.6 (Harding and Rubinstein 1980). Inconsistent with its subcortical source however, the signal was found to be tightly localised to the mastoid. This thesis re-examines the earlier protocols using flash stimulation and with auditory masking establishes by topographic studies that the VESP has a widespread scalp distribution, consistent with a far-field source of the signal, and is not a volume-conducted electroretinogram (ERG). Furthermore, mastoid localisation indicates auditory contamination from the click, on discharge of the photostimulator. The use of flash stimulation could not precisely identify the origin of the response. Possible sources of the VESP are the lateral geniculate body (LGB) and the superior colliculus. The LGB received 80% of the nerve fibres from the retina, and responds to high contrast achromatic stimulation in the form of drifting gratings of high spatial frequencies. At low spatial frequencies, it is more sensitive to colour. The superior colliculus is insensitive to colour and suppressed by contrast and responds to transitory rapid movements, and receives about 20% of the optic nerve fibres. A pattern VESP was obtained to black and white checks as a P23.5 N29.2 P34 complex in 93% of normal subjects at an optimal check size of 12'. It was also present as a P23.0 N28.29 P32.23 complex to red and green luminance balanced checks at 2o check size in 73% of subjects. These results were not volume-conducted pattern electroretinogram responses. These findings are consistent with the spatial frequency properties of the lateral geniculate body which is the considered source of the signal. With further work, the VESP may supplement electrodiagnosis of post-chiasmal lesions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Optometry