Use this URL to cite or link to this record in EThOS:
Title: Monotonic functions of finite posets
Author: Daykin, Jacqueline
ISNI:       0000 0001 3419 7663
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1984
Availability of Full Text:
Access from EThOS:
Access from Institution:
Classes of monotone functions from finite posets to chains are studied. These include order-preserving and strict order-preserving maps. When the maps are required to be bijective they are called linear extensions. Techniques for handling the first two types are closely related; whereas for linear extensions quite distinct methods are often necessary, which may yield results for order-preserving injections. First, many new fundamental properties and inequalities of a combinatorial nature are established for these maps. Quantities considered here include the range, height, depth and cardinalities of subposets. In particular we study convexity in posets and similarly pre-images of intervals in chains. The problem of extending a map defined on a subposet to the whole poset is discussed. We investigate positive correlation inequalities, having implications for the complexity of sorting algorithms. These express monotonicity properties for probabilities concerning sets of relations in posets. New proofs are given for existing inequalities and we obtain corresponding negative correlations, along with a generalization of the xyz inequality. The proofs involve inequalities in distributive lattices, some of which arose in physics. A characterization is given for posets satisfying necessary conditions for correlation properties under linear extensions. A log concavity type inequality is proved for the number of strict or non-strict order-preserving maps of an element. We define an explicit injection whereas the bijective case is proved in the literature using inequalities from the theory of mixed volumes. These results motivate a further group of such inequalities. But now we count numbers of strict or non-strict order-preserving maps of subposets to varying heights in the chain. Lastly we consider the computational cost of producing certain posets which can be associated with classical sorting and selection problems. A lower bound technique is derived for this complexity, incorporating either a new distributive lattice inequality, or the log concavity inequalities.
Supervisor: Not available Sponsor: Science and Engineering Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA Mathematics ; QC Physics