Use this URL to cite or link to this record in EThOS:
Title: Simulation and optimisation of SiGe MOSFETs
Author: Zhao, Yinpeng
ISNI:       0000 0001 3577 5584
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2000
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research project is concerned with the development of methodology for simulating advanced SiGe MOSFETs using commercial simulators, the calibration of simulators against higher level Monte Carlo simulation results and real device measurements, and the application of simulation tools in the design of next generation p- channel devices. The methodology for the modelling and simulation of SiGe MOSFET devices is outlined. There are many simulation approaches widely used to simulate SiGe devices, such as Monte Carlo, hydrodynamic, energy transport, and drift diffusion. Different numerical techniques including finite difference, finite box and finite element methods, may be used in the simulators. The Si0.8Ge0.2 p-MOSFETs fabricated especially for high-field transport studies and the Si0.64Ge0.36 p-channel MOSFETs fabricated at Warwick and Southampton Universities with a CMOS compatible process in varying gate lengths were calibrated and investigated. Enhanced low field mobility in SiGe layers compared to Si control devices was observed. The results indicated that the potential of velocity overshoot effects for SiGe p-MOSFETs was considerably higher than Si counterparts, promising higher performance in the former at equal gate lengths at ultra-small devices. The effects of punchthrough stopper, undoped buffers and delta doping for SiGe p-MOSFETs were analysed systematically. It was found that the threshold voltage roll off might be reduced considerably by using an appropriate punchthrough stopper. In order to adjust the threshold voltage for digital CMOS applications, p-type delta doping was required for n+-polysilicon gate p-MOSFET. The use of delta doping made the threshold voltage roll off a more serious issue, therefore delta doping should be used with caution. The two-dimensional process simulator TSUPREM-4 and the two-dimensional device simulator MEDICI were employed to optimise and design Si/SiGe hybrid CMOS. The output of TSUPREM-4 was transferred automatically to the MEDICI device simulator. This made the simulation results more realistic. For devices at small gate length, lightly doped drain (LDD) structures were required. They would decrease the lateral subdiffusion and allow threshold voltage roll off to be minimised. These structures, however, would generally reduce drain current due to an increase in the series resistance of the drain region. Further consideration must be made of these trade-offs. Comparison between drift diffusion and hydrodynamic simulation results for SiGe p-MOSFETs were presented for the first time, with transport parameters extracted from our in-house full-band hole Monte Carlo transport simulator. It was shown that while drift diffusion and hydrodynamic simulations provided a reasonable estimation of the I-V characteristics for Si devices, the same could not be said for aggressively scaled SiGe devices. The resulting high fields at the source end of the devices meant that nonequilibrium transport effects were significant. Therefore for holes, models based on an isotropic carrier temperature were no longer appropriate, as it was shown by analysing the tensor components of the carrier temperature obtained from Monte Carlo simulation. Two-dimensional drift diffusion and Monte Carlo simulations of well-tempered Si p-MOSFETs with gate lengths of 25 and 50 nm were performed. By comparing Monte Carlo simulations with carefully calibrated drift diffusion results, it was found that nonequilibrium transport was important for understanding the high current device characteristics in sub 0.1 mum p-MOSFETs. The well-tempered devices showed better characteristics than the conventional SiGe devices. Both threshold voltage roll off and the subthreshold slope were acceptable although the effective channel length of this device was reduced from 50 nm to 25 nm. In order to adjust the threshold voltage for the digital CMOS applications, p-type delta doping was used for 50 nm well-tempered SiGe p- MOSFETs. As the delta doping made the threshold voltage roll off too serious, it was not suitable for 25 nm well-tempered SiGe p-MOSFETs.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Circuits