Use this URL to cite or link to this record in EThOS:
Title: Microencapsulation strategies for islet transplantation
Author: Mahmood, Arshad
ISNI:       0000 0001 3616 6780
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1994
Availability of Full Text:
Access from EThOS:
Access from Institution:
A variety of islet microencapsulation techniques have been investigated to establish which method provides the least occlusive barrier to net insulin release in vitro, and optimum biocompatibility for islet implantation in vivo. NMRI mouse islets have been microencapsulated with Na+ -alginate-poly-L-lysine (PLL)/poly-L-ornithine (PLO)-alginate, Na2+ -alginate and agarose gels. Both free and microencapsulated islets responded to glucose challenge in static incubation and perifusion by significantly increasing their rate of insulin release and theophylline significantly potentiated the insulin response to glucose. While little insulin was released from microencapsulated islets after short term (2 hours) static incubation, significantly greater amounts were released in response to glucose challenge after extended (8-24 hours) incubation. However, insulin release from all types of microencapsulated islets was significantly reduced compared with free islets. Na+ -alginate-PLO-alginate microencapsulated islets were significantly more responsive to elevated glucose than Na+ -alginate-PLL-alginate microencapsulated islets, due to the enhanced porosity of PLO membranes. The outer alginate layer created a significant barrier to glucose/insulin exchange and reduced the insulin responsiveness of microencapsulated islets to glucose. Ba2+ -alginate membrane coated islets, generated by the density gradient method, were the most responsive to glucose challenge. Low concentrations of NG-monomethyl L-arginine (L-NMMA) had no significant effect on glucose stimulated insulin release from either free or microencapsulated islets. However, 1.0 mmol/1 L-NMMA significantly inhibited the insulin response of both free and microencapsulated islets to glucose challenge. In vivo work designed to evaluate the extent of pericapsular fibrosis after 28 days ip. and sc. implantation of microencapsulated islets into STZ-diabetic recipients, revealed that the inclusion of islets within microcapsules increased their immunogenicity and markedly increased the extent of pericapsular fibrosis.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Pharmacy