Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.351326
Title: A complexity theory of parallel computation
Author: Parberry, Ian
ISNI:       0000 0000 8390 083X
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1984
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Parallel complexity theory is currently one of the fastest growing fields of theoretical computer science. This rapid growth has led to a proliferation of parallel machine models and theoretical frameworks. Our aim is to construct a unified theory of parallel computation based on a network model. We claim that the network paradigm is fundamental to the understanding of parallel computation. and support this claim by providing new and Improved theoretical results, and new approaches to old questions concerning "reasonable" and "practical" models. This thesis is made up of eight chapters. Chapter 1 contains the introduction. In chapter 2 we define the basic model, and justify our choice of a unit- cost measure of time, a uniform assignment of programs to processors, and simultaneous processor activation. Chapter 3 compares the network model to a variety of others, including ' fixed-structure networks and shared-memory machines. We explore the concepts of "reasonableness" and "practicality" in parallel machine models, and show that even "reasonable" parallel computers are much taster than sequential ones. Chapter 4 is devoted to programming techniques for a "practical" network model, (which we call a feasible network), covering interconnection patterns, useful algorithms, and some processor-saving theorems. In chapter 5 we find efficient simulations of the general network model on more practical machines, including a universal feasible network, and uniform circuits. Chapter 6 extends the network model, and defines a new resource, that of arity. Although increasing arity Increases computing power, some efficient constant-arity universal machines are found. Chapter 7 takes a final look at universal networks, concentrating on lower-bounds and the conditions under which they hold. Chapter 6 contains the conclusion.
Supervisor: Not available Sponsor: Commonwealth Scholarship Commission
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.351326  DOI: Not available
Keywords: QA76 Electronic computers. Computer science. Computer software
Share: