Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343812
Title: The effect of elevated CO2 on nitrogen allocation between components of the photosynthetic machinery in Spring wheat
Author: Theobald, Julian C.
ISNI:       0000 0001 3516 7714
Awarding Body: Open University
Current Institution: Open University
Date of Award: 2000
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Wheat (Triticum aestivum L. cv Minaret) was grown long-term under CO2 partial pressures of 36 and 70 or 100 Pa with various N applications (4 to 23 g m-2 N), to test hypotheses of N re-allocation: 1) a decrease in N from leaves to other organs, 2) a relative decrease in N from Rubisco to other photosynthetic components. Elevated CO2 did not affect phenology, main stem leaf appearance, the pattern of N allocation throughout the plant, or the fraction of crop N in grain at harvest, but 1) stimulated biomass and yield by 5 to 20% over the N range used, and 2) caused a faster loss of N and components from flag leaves during grain-fill. Responses of photosynthesis to varying pCi were fitted, and rates of maximal carboxylation and non-photorespiratory respiration estimated. The former, was proportional to Rubisco content, and light-saturated photosynthetic rate at 70 Pa CO2 was proportional to A TP-synthase. Potential photosynthetic rates at 70 Pa CO2 were calculated, compared with observed, and used to estimate excess investment in Rubisco. The excess was greater in high N treatments than low, declining as leaves senesced. The fraction of Rubisco estimated to be in excess, was strongly dependent on leaf N content, increasing from - 5% in leaves with 1 g N m-2 to -40% in leaves with 2 g N m-2. Growth at elevated CO2 usually decreased the excess somewhat, but only as a consequence of a general decrease in leaf N, given that relationships of components to leaf N content were independent of CO2 and N treatment, demonstrating that no direct CO2 effect on N allocation within leaves had occurred. It is concluded that there is scope for improving the N-use efficiency of C3 crop plants in elevated CO2 conditions, by genetic manipulation to decrease the amount of Rubisco.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.343812  DOI:
Keywords: Photosynthesis; Nitrogen-use-efficiency
Share: