Use this URL to cite or link to this record in EThOS:
Title: Measures of effectiveness for data fusion based on information entropy
Author: Noonan, Colin Anthony
ISNI:       0000 0001 3448 6094
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2000
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with measuring and predicting the performance and effectiveness of a data fusion process. Its central proposition is that information entropy may be used to quantify concisely the effectiveness of the process. The personal and original contribution to that subject which is contained in this thesis is summarised as follows: The mixture of performance behaviours that occur in a data fusion system are described and modelled as the states of an ergodic Markov process. An new analytic approach to combining the entropy of discrete and continuous information is defined. A new simple and accurate model of data association performance is proposed. A new model is proposed for the propagation of information entropy in an minimum mean square combination of track estimates. A new model is proposed for the propagation of the information entropy of object classification belief as new observations are incorporated in a recursive Bayesian classifier. A new model to quantify the information entropy of the penalty of ignorance is proposed. New formulations of the steady state solution of the matrix Riccati equation to model tracker performance are proposed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Markov processes; Measurement