Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338669
Title: High resolution, high sensitivity tandem mass spectrometry of macromolecules using time-of-flight techniques
Author: Raptakis, Emmanuel N.
ISNI:       0000 0001 3508 5022
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1996
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The first of the three parts of this study involves the construction of a large scale time-of-flight mass spectrometer. A large aluminium-alloy vacuum chamber was designed and manufactured. Ion trajectory modelling was carried out for defining the optimum ion optical configuration of the matrix-assisted laser desorption/ionisation (MALDI) ion source that was designed and constructed. A floating ion detector assembly was designed and installed. MALDI mass spectrometry experiments were performed with biomolecules and polymer samples. The second part of this work involves the design and construction of a MALDI ion source in the collision cell area of a four-sector tandem mass spectrometer. The apparatus makes use of an array detector installed as the detector of the second double-focusing mass analyser of this instrument. High resolution and sensitivity mass spectra of high mass biomolecules and polymer samples were acquired. Resolution in excess of 3500 full-width at half maximum (FWHM) has been observed. The third part of this work describes the theoretical considerations, the design the construction and the performance of a prototype magnetic sector/time-of- flight tandem mass spectrometer with an ideal time-focusing ion mirror as the second mass analyser (Mag-TOF). The method followed in order to overcome the inherent incompatibilities of the two mass-analysis stages is discussed. The theoretical description of the ideal time-focusing reflectron is presented, together with analysis of the time-aberrations of the delivery ion optics and the TOF part of the instrument, and their influence to resolution and sensitivity. Initial experiments have been performed to prove the feasibility of the operational principle of this prototype instrument. High resolution (approximately 3000, FWHM) tandem mass spectra of peptides are presented. The instrument also achieved high levels of sensitivity.
Supervisor: Not available Sponsor: British Petroleum Company ; European Commission
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.338669  DOI: Not available
Keywords: QC Physics
Share: