Use this URL to cite or link to this record in EThOS:
Title: Extending the feature set for automatic face recognition
Author: Jia, Xiaoguang
ISNI:       0000 0001 3590 5385
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 1993
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Automatic face recognition has long been studied because it has a wide potential for application. Several systems have been developed to identify faces from small face populations via detailed face feature analysis, or by using neural nets, or through model based approaches. This study has aimed to provide satisfactory recognition within large populations of human faces and has concentrated on improving feature definition and extraction to establish an extended feature set to lead to a fully structured recognition system based on a single frontal view. An overall review on the development and the techniques of automatic face recognition is included, and performances of earlier systems are discussed. A novel profile description has been achieved from a frontal view of a face and is represented by a Walsh power spectrum which was selected from seven different descriptions due to its ability to distinguish the differences between profiles of different faces. A further feature has concerned the face contour which is extracted by iterative curve fitting and described by normalized Fourier descriptors. To accompany an extended set of geometric measurements, the eye region feature is described statistically by eye-centred moments. Hair texture has also been studied for the purpose of segmenting it from other parts of the face and to investigate the possibility of using it as a set of feature. These new features combine to form an extended feature vector to describe a face. The algorithms for feature extraction have been implemented on face images from different subjects and multiple views from the same person but without the face normal to the camera or without constant illumination. Features have been assessed in consequence on each feature set separately and on the composite feature vector. The results have continued to emphasize that though each description can be used to recognise a face there is a clear need for an extended feature set to cope with the requirements of recognizing faces within large populations.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Processing face images