Use this URL to cite or link to this record in EThOS:
Title: Characterisation of unresolved complex mixtures of hydrocarbons
Author: Gough, Mark Adrian
ISNI:       0000 0001 3507 370X
Awarding Body: Polytechnic South West
Current Institution: University of Plymouth
Date of Award: 1989
Availability of Full Text:
Access from EThOS:
Access from Institution:
The hydrocarbons of recent polluted sediments, in-reservoir and laboratory biodegraded crude oils, and certain petroleum products (e.g. lubricating oils) often display 'humps' or Unresolved Complex Mixtures (UCMs) when analysed by gas chromatography (GC). Although widespread and often abundant, to date little is known of their detailed molecular composition. Standard chromatographic methods of isolation of model aliphatic and aromatic hydrocarbon UCMs from lubricating oils followed by conventional methods of analysis provided little compositional detail. Thus GC and GC-electron impact mass spectrometry (GC-EIMS) was limited to an estimate of carbon number ranges and to the identification of certain series of 'biological marker' compounds. However, these were well resolved and were estimated to account for <10% of the total detector response. Further analyses were performed by chemical ionisation-MS (CI-MS), probe distillation EI-MS, field ionisation-MS (FIMS), and elemental analysis; yet the information provided by each was limited to a few 'average' molecular types. In view of the limitations of conventional methods of analysis, alternative methods were adopted. These utilised novel chemical and pyrolytic degradations of the UCM hydrocarbons. Chemical oxidation with Cr03 in glacial acetic acid produced reasonable yields of total recoverable material (40-80%). Furthermore, a high proportion were functionalised (>90%), and many resolved, which allowed their identification by EI and CI GC-MS. Surprisingly, the most abundant products of oxidation of hydrocarbon UCMs were straight chain monocarboxylic acids. This appeared to contradict literature consensus on UCM composition, namely a predominance of highly branched and/or cyclic hydrocarbons. However, from literature reported CrO oxidations of hydrocarbons, potential precursor compounds were proposed. These were monoalkyl substituted 'TO-branched acyclic and monocyclic alkanes for the aliphatic UCM and alkyl 'TO-branched monoaromatic hydrocarbons for the aromatic UCM. Proposed precursor UCM hydrocarbons were confirmed by synthesis and chemical oxidation under the same conditions. Thus each of the synthetic candidate UCM hydrocarbons [7-n-hexylnonadecane, 9-(2-phenylethyl)-heptadecane and 9-(2- cyc 1 ohexyl ethyl j--hep tade cane] produced n-acids on oxidation with Cr03- Further correlations were found for products of other synthetic alkanes and less abundant UCM oxidation products. For example, n-alkan-2-ones. iso alkan-2- ones, and 7-methyl--y-lactones could all be correlated with methyl substituted acyclic alkyl linkages on UCM hydrocarbons. The application of chemical oxidation to aliphatic UCMS of varied origin showed the technique has great potential for fingerprinting such samples. GC-MS analysis of a selected series of resolved product compounds (alkyl ketones, -y-methyl--y-lactones) showed good correlations for samples of the sane origin, yet distinct differences for UCHs from different sources. Biodegradation of the three candidate UCM hydrocarbons alongside acyclic isoprenoid alkanes and normal and monomethyl alkanea showed the UCM hydrocarbons were at least as resistant to microbial degradation as the isoprenoid alkanes. In this context it is therefore concluded that the candidate UCM compounds serve as good molecular models for hydrocarbon UCMs.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Hydrocarbon pollution Water Pollution Water Pollution Sewage Chemistry, Organic Water