Use this URL to cite or link to this record in EThOS:
Title: Laser cooling and trapping of atoms
Author: Townsend, Christopher G.
ISNI:       0000 0001 3535 7542
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1995
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
A detailed experimental and theoretical investigation of a magneto-optical trap for caesium atoms is presented. Particular emphasis has been placed on achieving high spatial number densities and low temperatures. Optimizing both of these together enables efficient evaporative cooling from a conservative trap, a procedure which has recently led to the first observations of Bose-Einstein condensation in a dilute atomic vapour. The behaviour of a magneto-optical trap is nominally determined by four independent parameters: the detuning and intensity of the light field, the magnetic field gradient and the number of trapped atoms. A model is presented which incorporates previous treatments into a single description of the trap that encompasses a wide range of its behaviour. This model was tested quantitatively by measuring the temperature of the cloud and its spatial distribution as a function of the four parameters. The maximum density was found to be limited both by the reabsorption of photons scattered within the cloud and by a reduction of the confining force at small light shifts. The nonlinear variation with position of the restoring force was found to be significant in limiting the number of atoms confined to a high density. A maximum density in phase space (defined as the number of atoms in a box with sides of dimension one thermal de Broglie wavelength) of (1.5 ± 0.5) x 10-5 was observed, with a spatial density of 1.5 x 1011 atoms per cm3. Cold collision losses from a caesium magneto-optical trap have been studied with the purpose of assessing their influence on spatial densities. In contrast to previous measurements of similar quantities, these measurements did not require the use of an ultra-low (< 10-10 Torr) background vapour pressure. The dependence of the cold collision loss coefficient β on the trapping intensity was measured to permit identification of the different cold collision processes. The largest loss rates observed were those due to hyperfine structure-changing collisions, with a coefficient β = (2±1) x 10-10cm3s-1. A study is presented of a modified magneto-optical trap in which a fraction of the population is shelved into a hyperfine level that does not interact with the trapping light. In this so-called "dark" magneto-optical trap, improved densities of nearly 1012cm-3 have been previously reported for sodium. The application of the technique to caesium is not straightforward due to the larger excited state hyperfine splittings. A simple theory for caesium is presented and its main predictions verified by measurements of density, number and temperature. A density of nearly 1012cm,-3 was indeed obtained but at a temperature substantially higher than in the conventional magneto-optical trap.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Cesium ; Cooling ; Laser cooling ; Magnetooptical devices