Use this URL to cite or link to this record in EThOS:
Title: Bulk and surface electronic structure of rare earth metals.
Author: Blyth, Robert I. R.
ISNI:       0000 0001 3468 5683
Awarding Body: University of Liverpool
Current Institution: University of Liverpool
Date of Award: 1991
Availability of Full Text:
Access from EThOS:
The basic properties of the rare earth metals, including single crystal growth, crystal and magnetic structures, and the relationship between electronic and magnetic structure, are reviewed. The problems encountered by the theoretical treatment of the partially occupied, but highly localised, lanthanide 4f levels as bands are discussed, and bandstructure calculations presented for the hexagonal close-packed rare earths. These are compared with available experimental and theoretical data. It is suggested that the exchange-splitting of the lanthanide valence bands may well persist in the paramagnetic state, and that account should be taken of the localised 4f moments in future calculations. The difficulties associated with the preparation of clean single crystal rare earth surfaces are described. The origin of the surface-orderdependent state seen in angle-resolved UV photoemission (ARUPS) spectra from rare earth (0/001) surfaces is discussed. (7 x 1) reconstructions of the (1120) surfaces of Ho, Er and Y are reported, with the resulting surface geometric and electronic structure being indistinguishable from those of the ideal (0001) structure. Momentum-resolved inverse photoernission measurements are presented for Y(000l), with results in good agreement with the calculated bandstructure. A comprehensive ARUPS study of the valence band of Ho(OOOl) is reported, and the results demonstrated to be entirely explicable in terms of emission from one-electron states. ARUPS data from Y(000l), Gd(000l) and Tb(000l) are presented, discussed in the light of the Ho results, and the conclusions of previous ARUPS studies of these surfaces revealed to be in error. Essentially similar ARUPS features are seen on all hcp rare earth (0001) surfaces so far studied and it is suggested that all other such surfaces will show the same features. The Ho(000l) 5p levels are shown to have significant band character, suggesting that further refinements to the band structure calculations are required.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Solid-state physics