Use this URL to cite or link to this record in EThOS:
Title: Optical signal processing using photorefractive crystals
Author: Hussein, Ghazanfar
ISNI:       0000 0001 3585 0898
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 1992
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
I describe in this thesis various techniques of optical signal processing using photorefractive BSO and BaTiO3 crystals. Operations of contrast manipulation, motion detection and parallel optical logic operations are demonstrated. Dynamic instabilities have also been investigated in photorefractive BaTiO3, in the mutually pumped geometry. Contrast manipulation of optical images has been performed via degenerate four wave mixing in BSO and BaTiO3 crystals. In BSO the technique adopted has the apparent drawback of intensity reduction, due to low reflectivities achieved, while using BaTiO3, selective enhancement is achieved for specific Fourier components. An improved versatile technique of polarization encoding of the object Fourier transform has also been implemented with, and without the inclusion of photorefractive crystals. Applications of this technique for phase contrast imaging, and observation in the field of aerodynamics, and Fourier transform synthesis, has been proposed and demonstrated. Optical motion detection using the differential response time of multiplexed gratings in photorefractive BSO has been demonstrated. The operation of velocity filtering has also been demonstrated using complementary gratings in a BSO crystal, in which specific features are only detected at particular speeds. All sixteen basic parallel optical logic operations have been demonstrated using polarization encoding in a phase conjugate Michelson interferometer with a crystal of BSO as a phase conjugate mirror. Finally dynamic instabilities in BaTiO3 in the 'Bird-wing' mutually-pumped configuration have also been investigated, and a phenomenological model is developed. Additionally various improvements and refinements have been proposed which will make these techniques more flexible and versatile.
Supervisor: Eason, Robert Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC Physics ; TK Electrical engineering. Electronics Nuclear engineering