Use this URL to cite or link to this record in EThOS:
Title: The isolation of novel Erwinia phages and their use in the study of bacterial phytopathogenicity
Author: Toth, Ian K.
ISNI:       0000 0001 3535 5299
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1991
Availability of Full Text:
Access from EThOS:
Access from Institution:
A number of bacteriophages were isolated on the "soft rot" phytopathogens Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Several of these phages were used to obtain phage resistant mutants of SCRI1043, in order to investigate the role of the bacterial cell surface in virulence. While a number of phenotypic properties relating to pathogenicity and virulence of this strain have already been uncovered, little is known about the role of the cell surface in virulence. It was hoped that the use of phages would allow selection of mutants altered in both cell surface and virulence. Two phage resistant mutants, A5/22 and A5/8, exhibited reduced virulence when inoculated into potato plants, and were investigated further. Both mutants showed pleiotropic phenotypes. As well as reduced virulence and phage resistance, these mutants showed a number of other phenotypic alterations including, a reduction in the production of plant cell wall degrading enzymes, increased sensitivity to surface active agents, alterations in lipopolysaccharide and outer membrane protein profiles and reduced motility. A5/22 also exhibited bacteriostasis in the presence of galactose. Mutant A5/22 was more severely affected in its virulence than A5/8, which reflected in its greater deviation from the wild type phenotype. While no one phenotypic alteration could be directly associated with the reduced virulence of either mutant, a combination of several phenotypes may have been responsible. The phages isolated in this study were the first reported for these strains of Erwinia, and were therefore characterised under a number of criteria. All phages were grouped on the basis of structural morphology, restriction endonuclease digestion and host range. This is the first detailed characterisation of phages for Erwinia carotovora subsp. atroseptica. All isolated phages were tested for generalised transduction, a method of molecular genetic analysis so far unavailable to Erwinia carotovora subsp. atroseptica SCRI1043 and Erwinia carotovora subsp. carotovora SCRI193. Two phages, ØKP and ØMl, were capable of generalised transduction in SCRI193 and SCRI1043 respectively. Both these phages were characterised and transducing frequencies improved. ØMl is the first transducing phage reported for Erwinia carotovora subsp. atroseptica and ØKP is only the second for Erwinia carotovora subsp. carotovora. Both phages are now being used extensively in the laboratory.
Supervisor: Not available Sponsor: Science and Engineering Research Council ; Scottish Crop Research Institute
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QR355 Virology