Use this URL to cite or link to this record in EThOS:
Title: The expression of xenobiotic metabolising enzymes in human tumours
Author: McKay, Judith A.
ISNI:       0000 0001 3624 9834
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 1996
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The cytochromes P450 (CYPs), epoxide hydrolases (EHs) and glutathione S-transferases (GSTs) are three of the major families of enzymes involved in the metabolism of xenobiotics in the human body. Immunohistochemical analysis revealed a high frequency of expression of xenobiotic metabolising enzymes in all tumour types studied, in contrast to corresponding normal tissue which displayed only low levels of expression. Further examination of the CYP1 family was carried out by immunoblot analysis. All breast tumours studied were found to express CYP1B1, and not CYP1A1 or CYP1A2. Moreover, CYP1B1 was identified in a number of kidney tumours but not in corresponding normal kidney, indicating that CYP1B1 may be a tumour-specific form of CYP, RT-PCR, in combination with restriction digestion and DNA sequencing, was used to identify CYP mRNA species present in several tumour types. Although CYP1A1 mRNA was identified in breast carcinomas, CYP1B1 was found to be the most frequently expressed form of the CYP1 family in this tissue. CYP3A mRNA was also displayed by several breast tumours, and demonstrated by sequencing to be CYP3A5. A similar situation to breast tumours was observed in tumours of the gastro-intestinal and urinary tracts, with CYP1B1 being the most frequently expressed form of the CYP1 family, and only a small number of samples displaying evidence of CYP1A mRNA. The effects of the expression of xenobiotic metabolising enzymes in tumours may be complex, and depend upon the relative amounts of active protein present, but it is likely that they will exert an influence on both the development of carcinogenesis and the anti-cancer drug resistance of tumours.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Carcinogenesis; Anti-cancer drugs; Cancer