Use this URL to cite or link to this record in EThOS:
Title: Synthesis, crystallography and biological activity of myo-inositol phosphates
Author: Spiers, Ian D.
ISNI:       0000 0001 3475 2970
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1996
Availability of Full Text:
Access from EThOS:
Access from Institution:
The antioxidant property of myo-inositol hexakisphosphate is important in the prevention of hydroxyl radical formation which may allow it to act as a 'safe' carrier of iron within the cell. Here, the hypothesis that the recently discovered natural product, myo-inositol 1,2,3-trisphosphate represents the simplest structure to mimic phytate's antioxidant activity has been tested. The first synthesis of myo-inositol 1,2,3-trisphosphate has been completed, along with its X-ray structure determination and that of key synthetic intermediates. Iron binding studies of myo-inositol 1,2,3-trisphosphate demonstrated that phosphate groups with the equatorial-axial-equatorial conformation are required for complete inhibition of hydroxyl radical formation. myo-Inositol monophosphatase is a key enzyme in recycling myo-inositol from its monophosphates in the brain and its inhibition is implicated in lithium's antimanic properties. Current synthetic strategies require inositol compounds to be protected (often with more than one group), resolved, phosphorylated and deprotected to produce the desired optically active myo-inositol phosphates. Here, the synthesis of myo-inositol 3-phosphate has been achieved in only 4 steps from myo-inositol. The stereoselective addition of the chiral phosphorylating agent (2R,4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidin-2-one to a protected inositol intermediate allowed separation of diastereoisomers and easy deprotection to myo-inositol 3-phosphate. This strategy also allows the possible introduction of labels of oxygen and sulphur to give a thiophosphate of known stereochemistry at phosphorus which would be useful for the analysis of the stereochemical course of phosphate hydrolysis catalysed by inositol monophosphatase.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Pharmacy ; Biological Sciences