Use this URL to cite or link to this record in EThOS:
Title: Group enumeration
Author: Blackburn, Simon R.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1992
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The thesis centres around two problems in the enumeration of p-groups. Define fφ(pm) to be the number of (isomorphism classes of) groups of order pm in an isoclinism class φ. We give bounds for this function as φ is fixed and m varies and as m is fixed and φ varies. In the course of obtaining these bounds, we prove the following result. We say a group is reduced if it has no non-trivial abelian direct factors. Then the rank of the centre Z(P) and the rank of the derived factor group P|P' of a reduced p-group P are bounded in terms of the orders of P|Z(P)P' and P'∩Z(P). A long standing conjecture of Charles C. Sims states that the number of groups of order pm is
p2andfrasl;27m3+O(m2). (1) We show that the number of groups of nilpotency class at most 3 and order pm satisfies (1). We prove a similar result concerning the number of graded Lie rings of order pm generated by their first grading.
Supervisor: Neumann, P. M. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Group theory ; Abelian p-groups