Use this URL to cite or link to this record in EThOS:
Title: Development and experimental analysis of a micromachined resonant gyroscope
Author: Young, Michael
ISNI:       0000 0001 3575 7482
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 1999
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with the development and experimental analysis of a resonant gyroscope. Initially, this involved the development of a fabrication process suitable for the construction of metallic microstructures, employing a combination of nickel electroforming and sacrificial layer techniques to realise free-standing and self-supporting mechanical elements. This was undertaken and achieved. Simple beam elements of typically 2.7mm x 1mm x 40µm dimensions have been constructed and subject to analysis using laser doppler interferometry. This analysis tool was used to implement a fill modal analysis in order to experimentally derive dynamic parameters. The characteristic resonance frequencies of these cantilevers have been measured, with 3.14kHz, 23.79kHz, 37.94kHz and 71.22kHz being the typical frequencies of the first four resonant modes. Q-factors of 912, 532, 1490 and 752 have been measured for these modes respectively at 0.01mbar ambient pressure. Additionally the mode shapes of each resonance was derived experimentally and found to be in excellent agreement with finite element predictions. A 4mm nickel ring gyroscope structure has been constructed and analysed using both optical analysis tools and electrical techniques. Using laser doppler interferometry the first four out-of-plane modes of the ring structure were found to be typically 9.893 kHz, 11.349 kHz, 11.418 kHz and 13.904 kHz with respective Q-factors of 1151, 1659, 1573 and 1407 at 0.01 mbar ambient pressure. Although electrical measurements were found to be obscured through cross coupling between drive and detection circuitry, the in-plane operational modes of the gyroscope were sucessfully determined. The Cos2Ө and Sin2Ө operational modes were measured at 36.141 kHz and 36.346 kHz, highlighting a frequency split of 205kHz. Again all experimentally derived modal parameters were in good agreement with finite element predictions. Furthermore, using the analysis model, the angular resolution of the gyroscope has been predicted to be approximately 4.75º/s.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Nickel electroforming