Use this URL to cite or link to this record in EThOS:
Title: The geology and geochemistry of Closepet granite, Karnataka, South India.
Author: Oak, Keith Alan.
ISNI:       0000 0001 3454 6122
Awarding Body: Oxford Polytechnic
Current Institution: Oxford Brookes University
Date of Award: 1990
Availability of Full Text:
Access from EThOS:
The Archaean craton of southern India has four main components. The multi-phase Peninsular gneiss, with ages from 3360-2900 Ma, is spatially dominant and grades from granulite facies in the south to greenschist facies in the north. Ages for the Peninsular gneiss range from 3360-2900 Ma. Within the craton are two suites of Greenstone Belts and supracrustal rocks. The older, high-grade Sargur type occur as enclaves in the Peninsular gneiss and are in places older than 3360 Ma. The younger, lower-grade type occur occasionally have unconformable bases with the Peninsular gneiss and have been dated from 3100-2605 Ma. Granitoids form the last major component with the Closepet granite being the largest, ages for the emplacement of the Closepet granite and many of the other granitoids cluster around 2500 Ma. The Closepet granite outcrops from Kabbal Durge in the south to the Deccan Plateau in the north, a distance of some 450 km. A 320 km section from Kabbal Durga to Hospet in the north exposes a linear trending granite. The granite outcrop varies from one of essentially partial melting and melt extraction in the south to a zone of melt accumulation in the central zone to a zone of high level intrusion of large granite bodies. Related to these changes in primary processes are changes in the granite phases, size, shape and intrusive style. The petrography of the granite phases is described. These studies help to constrain phase relationships. The petrography also provides evidence to suggest that the K-feldspar megacrysts are in fact phenocrysts. Analyses of major and trace elements utilised standard X.R.F. methods. However, the analyses of REE on selected samples involved the setting up of the department's "ICP for routine operation. This procedure is outlined. The geochemistry of the granite's is described melting and crystallization models being used to explain their petrogenesis. Harker diagrams indicate that plagioclase, sphene and apatite have strong controls on major element composition and that biotite was a residual or fractionating phase. The removal of restite biotite as granite magmas intrude is thought to be a significant process.Evidence from the petrography agrees with the equilibrium phase diagram at PH2 0 ~ 5 kbar. Plots of Peninsular gneiss in the granite phase diagram have a range of compositions which could provide minimum and non-minimum melts capable of producing the Closepet granite trend. Predicted fractional crystallization would produce a sequence of magma compositions comparable to those of the Closepet granite with an order of phase crystallization that agrees with petrographic evidence. The phase relationships further constrain subsequent melting and crystallization models utilising trace elements and REE.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Archaean craton of S. India