Use this URL to cite or link to this record in EThOS:
Title: The durability of glass fibre reinforced cements made with new cementitious matrices
Author: Purnell, Philip
ISNI:       0000 0001 3503 0144
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 1998
Availability of Full Text:
Access from EThOS:
Access from Institution:
Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed. It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Mechanical Engineering ; Civil Engineering