Use this URL to cite or link to this record in EThOS:
Title: From uncertainty to adaptivity : multiscale edge detection and image segmentation
Author: Liang, Kung-Hao
ISNI:       0000 0001 3609 6292
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 1997
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis presents the research on two different tasks in computer vision: edge detection and image segmentation (including texture segmentation and motion field segmentation). The central issue of this thesis is the uncertainty of the joint space-frequency image analysis, which motivates the design of the adaptive multiscale/multiresolution schemes for edge detection and image segmentation. Edge detectors capture most of the local features in an image, including the object boundaries and the details of surface textures. Apart from these edge features, the region properties of surface textures and motion fields are also important for segmenting an image into disjoint regions. The major theoretical achievements of this thesis are twofold. First, a scale parameter for the local processing of an image (e.g. edge detection) is proposed. The corresponding edge behaviour in the scale space, referred to as Bounded Diffusion, is the basis of a multiscale edge detector where the scale is adjusted adaptively according to the local noise level. Second, an adaptive multiresolution clustering scheme is proposed for texture segmentation (referred to as Texture Focusing) and motion field segmentation. In this scheme, the central regions of homogeneous textures (motion fields) are analysed using coarse resolutions so as to achieve a better estimation of the textural content (optical flow), and the border region of a texture (motion field) is analysed using fine resolutions so as to achieve a better estimation of the boundary between textures (moving objects). Both of the above two achievements are the logical consequences of the uncertainty principle. Four algorithms, including a roof edge detector, a multiscale step edge detector, a texture segmentation scheme and a motion field segmentation scheme are proposed to address various aspects of edge detection and image segmentation. These algorithms have been implemented and extensively evaluated.
Supervisor: Not available Sponsor: Linda Sumartini Foundation
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General)