Use this URL to cite or link to this record in EThOS:
Title: Mechanisms of failure of jointed rock masses and the behaviour of steep slopes
Author: Kimber, Owen Graham
ISNI:       0000 0001 3599 5413
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 1998
Availability of Full Text:
Access from EThOS:
Access from Institution:
The geomorphological behaviour of steep jointed rock slopes has been studied using distinct element method computer models. In order to model steep slopes effectively, methodologies need to be combined from the studies of environmental modellers, geomorphologists and engineers. The distinct element method is ideal for the study of the development of jointed rock masses as the discontinuum approach can model the progressive failure of rock blocks along discontinuities. Initial, theoretical modelling identified the limiting boundary conditions between the multiple block failure mechanisms of toppling, sliding and toppling-and-sliding, based upon the discontinuity geometry for a theoretically modelled limestone rock mass. It is demonstrated that joint dip, friction angle and spacing exert the greatest control upon rock mass failure mechanisms. Two field locations, the Colorado Plateau and the Isle of Purbeck, have been chosen to provide a link between theoretical modelling and classic rock mass landforms which are controlled by variation in discontinuity geometry. In the Portland Limestone of the Isle of Purbeck, it is the joint geometry variation which influences development. Bedding steepens and average block size decreases in the coastal rock cliffs from east to west. Comparison between the model outputs highlighted that there is an increase in the rate of simulated cliff retreat from Winspit in the east to Durdle Door in the west. The Colorado Plateau rock cliffs form large, embayed plan-form escarpments and detached monoliths. It is the variation of joint set spacing in the cap-rock of cuesta-form composite scarps that controls development. Model results suggest there is a continuum of rock mass landforms, with buttes becoming detached at plan-form necks in the escarpment as determined by the joint geometry. The results show excellent similarity with the landforms observed in the field. This thesis introduces a research tool that can provide an understanding of slope behaviour.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Geomorphology; Dorset; Colorado