Title:
|
Algebraic geometry in experimental design and related fields
|
The thesis is essentially concerned with two subjects corresponding to the two grants under which the author was research assistant in the last three years. The one presented first, which cronologically comes second, addresses the issues of iden- tifiability for polynomial models via algebraic geometry and leads to a deeper understanding of the classical theory. For example the very recent introduction of the idea of the fan of an experimental design gives a maximal class of models identifiable with a given design. The second area develops a theory of optimum orthogonal fractions for Fourier regression models based on integer lattice designs. These provide alternatives to product designs. For particular classes of Fourier models with a given number of interactions the focus is on the study of orthogonal designs with attention given to complexity issues as the dimension of the model increases. Thus multivariate identifiability is the field of concern of the thesis. A major link between these two parts is given by Part III where the algebraic approach to identifiability is extended to Fourier models and lattice designs. The approach is algorithmic and algorithms to deal with the various issues are to be found throughout the thesis. Both the application of algebraic geometry and computer algebra in statistics and the analysis of orthogonal fractions for Fourier models are new and rapidly growing fields. See for example the work by Koval and Schwabe (1997) [42] on qualitative Fourier models, Shi and Fang (1995) [67] on ¿/-designs for Fourier regression and Dette and Haller (1997) [25] on one-dimensional incomplete Fourier models. For algebraic geometry in experimental design see Fontana, Pistone and Rogantin (1997) [31] on two-level orthogonal fractions, Caboara and Robbiano (1997) [15] on the inversion problem and Robbiano and Rogantin (1997) [61] on distracted fractions. The only previous extensive application of algebraic geometry in statistics is the work of Diaconis and Sturmfels (1993) [27] on sampling from conditional distributions.
|