Use this URL to cite or link to this record in EThOS:
Title: Explicit alternating direction methods for problems in fluid dynamics
Author: Al-Wali, Azzam Ahmad
ISNI:       0000 0001 3409 3215
Awarding Body: Loughborough University of Technology
Current Institution: Loughborough University
Date of Award: 1994
Availability of Full Text:
Access from EThOS:
Access from Institution:
Recently an iterative method was formulated employing a new splitting strategy for the solution of tridiagonal systems of difference equations. The method was successful in solving the systems of equations arising from one dimensional initial boundary value problems, and a theoretical analysis for proving the convergence of the method for systems whose constituent matrices are positive definite was presented by Evans and Sahimi [22]. The method was known as the Alternating Group Explicit (AGE) method and is referred to as AGE-1D. The explicit nature of the method meant that its implementation on parallel machines can be very promising. The method was also extended to solve systems arising from two and three dimensional initial-boundary value problems, but the AGE-2D and AGE-3D algorithms proved to be too demanding in computational cost which largely reduces the advantages of its parallel nature. In this thesis, further theoretical analyses and experimental studies are pursued to establish the convergence and suitability of the AGE-1D method to a wider class of systems arising from univariate and multivariate differential equations with symmetric and non symmetric difference operators. Also the possibility of a Chebyshev acceleration of the AGE-1D algorithm is considered. For two and three dimensional problems it is proposed to couple the use of the AGE-1D algorithm with an ADI scheme or an ADI iterative method in what is called the Explicit Alternating Direction (EAD) method. It is then shown through experimental results that the EAD method retains the parallel features of the AGE method and moreover leads to savings of up to 83 % in the computational cost for solving some of the model problems. The thesis also includes applications of the AGE-1D algorithm and the EAD method to solve some problems of fluid dynamics such as the linearized Shallow Water equations, and the Navier Stokes' equations for the flow in an idealized one dimensional Planetary Boundary Layer. The thesis terminates with conclusions and suggestions for further work together with a comprehensive bibliography and an appendix containing some selected programs.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Statistics ; Operations research ; Fluid mechanics ; Mathematics