Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252180
Title: The prediction of chemosensory effects of volatile organic compounds in humans
Author: Gola, Joelle Muriel Rachel
ISNI:       0000 0001 3501 7206
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2002
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
An introduction to indoor air pollution is given, and the chemosensory effects in humans of volatile organic compounds (VOCs), singly and in binary mixtures, are described, together with the bioassays already developed to quantify the effects of VOCs. The need for predictive models that can take over the bioassays is emphasised. Attention is drawn to the establishment of mathematical models to predict the chemosensory effects of VOCs in humans. Nasal pungency threshold (NPT), eye irritation threshold (EIT) and odour detection threshold (ODT) values are available for a series of VOCs that cover a large range of solute properties. Each of these sets of biological data are regressed against the corresponding solute descriptors, E, S, A, B and L to obtain quantitative structure activity relationships (QSARs) for log(l/NPT), log(l/ODT) and log(l/EIT) taking on the form: LogSP = c + e.E + s.S + a.A + b.B + l.L. The availability of solute descriptors is investigated. It is shown that solute descriptors, E an excess molar refraction, S the solute dipolarity/polarizability, A the solute overall hydrogen-bond acidity, B the solute overall hydrogen-bond basicity and L the logarithmic value of the solute Ostwald solubility coefficient in hexadecane at 298K, can be obtained through the use of various thermodynamic measurements. In this way descriptors for some 300 solutes have been obtained. A headspace gas chromatographic method is also devised to determine the 1:1 complexation constant, K, between hydrogen bond donors and hydrogen bond acceptors in octan-1-ol.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.252180  DOI: Not available
Keywords: Air pollution & emissions & acid rain
Share: