Use this URL to cite or link to this record in EThOS:
Title: Electronic states and optical properties of quantum well heterostructures with strain and electric field effects
Author: Ryan, Desmond Michael
ISNI:       0000 0001 3542 7862
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 1997
Availability of Full Text:
Access from EThOS:
Access from Institution:
The aim of this work was to develop an envelope function method to calculate the electronic states and optical properties of complex quantum well heterostructures, and to demonstrate its effectiveness by application to some device structures of topical interest. In particular, structures have been considered which might form the basis of intensity modulators and polarization insensitive amplifier devices for light at a wavelength of 1.55 µm. The modulator structures considered all have the general form of two coupled quantum wells of different widths as the active region. The application of an electric field in the growth direction is intended to result in a shift in the energy and spatial localisation of the confined states and produce an increase in the absorption coefficient at longer wavelengths than the zero field absorption edge. The effectiveness of certain structures is examined in terms of field induced absorption increase at 1.55 µm. A system which shows a significant increase in absorption coefficient at this wavelength on application of a practical electric field has been identified as a possible candidate for an intensity modulator. In the case of the amplifier, the active region of the most promising structure considered consists of a stepped well which comprises two layers, one with tensile and one with compressive strain. It is known that the presence of the two oppositely strained layers can result in the TE and TM gain peaks appearing at similar photon energies. Our calculations show that a suitable choice of strain and layer widths can result in a small or zero difference between the TE and TM gains at 1.55 µm, which can be important for the polarization insensitive operation of devices in optical communications applications. In order to predict the optical properties of quantum well devices it is necessary to calculate the electron and hole states for a range of in-plane wavevectors. The calculations developed and carried out in this work are based on a multi-layer (eight band) k.p model including strain effects. The interfacial boundary conditions which result from approximations to Burt's exact envelope function theory are included in the model. The effect of an electric field is modelled by including a potential energy term in each layer Hamiltonian which is equal to the average energy shift across the layer in question due to the presence of the field. The model has been developed with flexibility in mind and has applications beyond the specific devices considered in this thesis.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Effective mass; Interfacial boundary conditions