Use this URL to cite or link to this record in EThOS:
Title: Results concerning the Steenrod algebra
Author: Crossley, Martin D.
ISNI:       0000 0001 3398 5107
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 1994
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In this thesis I provide two main results concerning the Steenrod algebra, one relating to the mod 2 case and the other holding for all odd primes. In chapter 1 certain properties of the Adams operators on complex K theory, which were described by Adams [1] and Atiyah [3], are used to give a construction of the Steenrod squares on the cohomology of finite 2-torsion free CW complexes. With this approach, certain periodic relations are clearly seen to hold in A(2), the mod 2 Steenrod algebra, which are not easily derived algebraically from the standard formulation of the Adem relations. It turns out that these formulae have been established previously in the literature (see [6], [21]) but the method of proof presented here is completely different. A variety of applications are considered, serving as examples of how these equations may be of use. Of particular interest is the observation that the ideal generated by these relations is a Hopf ideal and we use this to construct a Hopf super-algebra of A(2). Chapter 2 tackles the problem of calculating which classes in the homology of a k-fold product of infinite complex projective spaces are annihilated by the dualised action of the elements of positive grading in A-(p), the mod p Steenrod algebra. The space of all such classes is denoted by Mk. Our objective in calculating Mk is to enumerate all the irreducible representations of GL(k,Fp) over Fp. For k = 1 the problem is trivial and the result is mentioned briefly. The case where k = 2 forms the bulk of the chapter and the solution is computed directly. Some comments are made about the general situation, where k > 2, which may assist an attempt at solving this problem. M1 can be 'embedded' into Mk (for k > 1) and we denote by Lk the subalgebra generated by elements in the images of all such embeddings.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Pure mathematics