Use this URL to cite or link to this record in EThOS:
Title: High Strength concrete corbels
Author: Halabi, Walid Charif
ISNI:       0000 0001 3524 3043
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 1991
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Concrete is still the most widely used construction material of modern times. In very recent years attempts have been made by using steel fibre reinforcement to improve the inherent weaknesses that concrete possesses such as its low tensile strength and the tendency to shrink on drying and to creep under stress. In this context, the use of steel fibre reinforcement together with high strength concrete corbel joints has been investigated. This study came after fibre reinforced concrete had received wide recognition for its crack and deformation control, ductility and energy absorption characteristics. In the present study, the fracture behaviour and deformation characteristics of plain conventionally reinforced concrete corbels with and without steel fibre reinforcement has been investigated. The different types of steel fibres used and other experimental materials are described in chapter 3, whereas chapter 2 gives a review of the old and current design approaches used for concrete corbel design. In chapter 4 the deformation, cracking and ultimate strength of plain high strength concrete corbels has been studied with different cube strength ranged between 25 to 90 N/mm2. In chapter 5 a proposed theory to predict the ultimate strength of high and normal strength concrete corbels, conventionally reinforced, has been derived. The influence of steel fibre reinforcement on the performance of conventionally reinforced concrete corbels has been studied in chapter 6. Melt extract steel fibres were used in the majority of the corbels together with other types such as crimped, hooked and plastic fibres (polypropylene). In the same chapter 6, the theory has been extended to account for the strength gained by fibre addition. The effect of steel fibre reinforcement on the shear transfer strength has been studied in chapter 7. The theory proposed in chapter 5 has been further extended to predict the shear strength of 'push-off' type of specimens of plain and fibre reinforced concrete, with conventional steel reinforcement.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Structural engineering