Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239382
Title: On characteristic p Verma modules and subalgebras of the hyperalgebra
Author: Carstensen, Vivi
ISNI:       0000 0001 3522 3384
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1994
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Let G be a finite dimensional semisimple Lie algebra; we study the class of infinite dimensional representations of Gcalled characteristic p Verma modules. To obtain information about the structure of the Verma module Z(λ) we find primitive weights μ such that a non-zero homomorphism from Z(μ) to Z(λ) exists. For λ + ρ dominant, where ρ is the sum of the fundamental roots, there exist only finitely many primitive weights, and they all appear in a convex, bounded area. In the case of λ + ρ not dominant, and the characteristic p a good prime, there exist infinitely many primitive weights for the Lie algebra. For G = sl3 we explicitly present a large, but not necessarily complete, set of primitive weights. A method to obtain the Verma module as the tensor product of Steinberg modules and Frobenius twisted Z(λ1) is given for certain weights, λ = pn λ1 + (pn — 1)ρ. Furthermore, a result about exact sequences of Weyl modules is carried over to Verma modules for sl2. Finally, the connection between the subalgebra u¯1 of the hyperalgebra U for a finite dimensional semisimple Lie algebra, and a group algebra KG for some suitable p-group G is studied. No isomorphism exists, when the characteristic of the field is larger than the Coxeter number. However, in the case of p — 2 we find u¯1sl3≈ KG. Furthermore, we determine the centre ofu¯nsl3, and we obtain an alternative K-basis of U-.
Supervisor: Erdmann, Karin Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.239382  DOI: Not available
Keywords: Modules (Algebra)
Share: