Use this URL to cite or link to this record in EThOS:
Title: Effect of processing on sulphur antioxidants in polyolefins
Author: Coker, Magnus R. S.
ISNI:       0000 0001 3559 9576
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1986
Availability of Full Text:
Access from EThOS:
Access from Institution:
The effect of processing on the antioxidant activity of sulphur-containing compounds, with particular reference to nickel dialkyldithiophosphates and their corresponding di sulphides, were studied in polyolefins under melt, thermal and photo-oxidative conditions. These compounds were evaluated both at low (normal) and high (concentrates) concentrations. In general, the dithiophosphates were found to be very efficient melt stabilisers at normal concentrtion levels, and compare quite favourably with the best commercially available systems. The nickel dithiophosphates were also found to be very efficient thermal stabilisers for polyolefins, but their activity is highly dependent on the alkyl substituent in the molecule. The corresponding disulphides on the other hand showed very little activity under thermal oxidative conditions, and this was attributed to their inefficiency in scavenging alkyl peroxyl radicals since both compounds possess similar peroxidolytic activity. Furthermore, the nickel dithiophosphates were found to be excellent photo stabilisers for mildly-processed polyolefins while the corresponding disulphides only offer slight protection to the polymer. Oxidative processing of the disulphide, however, results in a dramatic improvement in their photo antioxidant activity. Thionophospho-ric acid, a major oxidation product of dithiophosphates, was also shown to have photo antioxidant activity similar to that of the disulphides. A combination of a U.V. absorber with the nickel complex and/or the disulphide resulted in a synergistic stabiliser system which was further augmented by oxidative processing. Moreover, the dilute analogues of such multicomponent stabiliser concentrates also showed excellent melt, thermal and photo-stabilising activity. The mechanistic studies carried out on the nickel complex and the corresponding disulphide clearly identified the thionophosphoric acid a a major transformation product although various triesters were formed as reaction intermediates. The mechanisms of the antioxidant action of the dithiophosphates, which is believed to involve a cyclical process similar to that shown for simple alkyl sulphides and nitroxyls, are discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Molecular Biology