Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.732205
Title: Predicting prognosis in Crohn's disease
Author: Biasci, Daniele
ISNI:       0000 0004 6495 8250
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 01 Jan 2100
Access from Institution:
Abstract:
No abstract available
Supervisor: Smith, Kenneth G. C. Sponsor: Marie Curie PhD Fellowship ; Wellcome Trust ; Crohn's and Colitis UK ; Evelyn Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.732205  DOI:
Keywords: Crohn's disease ; Ulcerative colitis ; IBD ; Autoimmune diseases ; Prediction ; Machine learning ; Prognosis ; Outcome ; Personalised medicine ; Genetics of prognosis ; qPCR test ; genome-wide association study ; GWA
Share: