Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.731299
Title: From practice to theory : computational studies on fluorescence detection and laser therapy in dermatology
Author: Van der Beek, Nick
ISNI:       0000 0004 6495 636X
Awarding Body: University of Wales Trinity Saint David
Current Institution: University of Wales Trinity Saint David
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Computational studies on light‐tissue interactions in medical treatment and diagnosis have offered deeper insights in the processes underlying laser treatments and fluorescence measurements. I apply this approach in the study of fluorescence detection and of laser therapy. First, I investigate three methods of fluorescence detection and the reported contrast between healthy skin and malignant tissue. I varied the concentration of haemoglobin in the target, the concentration of melanin in the epidermis, the scattering of light in the skin, the depth at which the target is located in the skin, the width of the target, the thickness of the target, the concentration of photosensitizer in the target, and the concentration of photosensitizer in the skin. My findings confirm previous clinical studies in that the auto‐fluorescence corrected fluorescence detection method generally shows a higher contrast than the other methods. The results support earlier clinical studies and are in accordance with expert experience. Second, I study laser therapy for psoriasis. In a series of simulations, I analyse three types of pulsed dye laser systems and one IPL system. The investigated biological effects are heat shock proteins, hyperthermic tissue damage and vasoconstriction of the microvasculature. The changes in the skin concern blood volume, blood oxygenation and scattering in the epidermis. The calculations show that there are some notable differences in the effect changes in the composition of psoriatic tissue has on the efficacy of laser and IPL therapy. Still, Inter‐device variance was more prominent than intra‐geometry variance. My study adds to the understanding of fluorescence detection of keratinocyte skin cancers, as well as that of laser therapy for psoriasis. Additionally, it offers potential avenues for increasing the efficacy and efficiency of these therapies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.731299  DOI: Not available
Keywords: RL Dermatology ; T Technology (General)
Share: