Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.727823
Title: Modelling and controlling risk in energy systems
Author: Gonzalez, Jhonny
ISNI:       0000 0004 6494 9696
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The Autonomic Power System (APS) grand challenge was a multi-disciplinary EPSRC-funded research project that examined novel techniques that would enable the transition between today's and 2050's highly uncertain and complex energy network. Being part of the APS, this thesis reports on the sub-project 'RR2: Avoiding High-Impact Low Probability events'. The goal of RR2 is to develop new algorithms for controlling risk exposure to high-impact low probability (Hi-Lo) events through the provision of appropriate risk-sensitive control strategies. Additionally, RR2 is concerned with new techniques for identifying and modelling risk in future energy networks, in particular, the risk of Hi-Lo events. In this context, this thesis investigates two distinct problems arising from energy risk management. On the one hand, we examine the problem of finding managerial strategies for exercising the operational flexibility of energy assets. We look at this problem from a risk perspective taking into account non-linear risk preferences of energy asset managers. Our main contribution is the development of a risk-sensitive approach to the class of optimal switching problems. By recasting the problem as an iterative optimal stopping problem, we are able to characterise the optimal risk-sensitive switching strategies. As byproduct, we obtain a multiplicative dynamic programming equation for the value function, upon which we propose a numerical algorithm based on least squares Monte Carlo regression. On the other hand, we develop tools to identify and model the risk factors faced by energy asset managers. For this, we consider a class of models consisting of superposition of Gaussian and non-Gaussian Ornstein-Uhlenbeck processes. Our main contribution is the development of a Bayesian methodology based on Markov chain Monte Carlo (MCMC) algorithms to make inference into this class of models. On extensive simulations, we demonstrate the robustness and efficiency of the algorithms to different data features. Furthermore, we construct a diagnostic tool based on Bayesian p-values to check goodness-of-fit of the models on a Bayesian framework. We apply this tool to MCMC results from fitting historical electricity and gas spot price data- sets corresponding to the UK and German energy markets. Our analysis demonstrates that the MCMC-estimated models are able to capture not only long- and short-lived positive price spikes, but also short-lived negative price spikes which are typical of UK gas prices and German electricity prices. Combining together the solutions to the two problems above, we strive to capture the interplay between risk, uncertainty, flexibility and performance in various applications to energy systems. In these applications, which include power stations, energy storage and district energy systems, we consistently show that our risk management methodology offers a tradeoff between maximising average performance and minimising risk, while accounting for the jump dynamics of energy prices. Moreover, the tradeoff is achieved in such way that the benefits in terms of risk reduction outweigh the loss in average performance.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.727823  DOI: Not available
Keywords: Energy storage ; Bayesian p-value ; Bayesian analysis ; Mixture of OU processes ; MCMC algorithms ; District energy systems ; Energy tolling agreements ; Energy price modelling ; Risk measures ; Energy markets ; Risk-sensitive optimal switching ; Optimal switching ; Risk-sensitive control ; Energy systems ; Energy risk management ; Snell envelope ; Least squares Monte Carlo
Share: