Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.727713
Title: Characterization of the acoustic properties of cementitious materials
Author: Sun, Ruting (Michelle)
ISNI:       0000 0004 6494 174X
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The primary aim of this research was to investigate the fundamental acoustic properties of several cementitious materials, the influence of mix design parameters/constituents, and finally the effect of the physical and mechanical properties of cementitious material concrete/mortar on the acoustic properties of the material. The main objectives were: To understand the mechanism of sound production in musical instruments and the effects of the material(s) employed on the sound generated; To build upon previous research regarding selection of the tested physical/mechanical properties and acoustic properties of cementitious materials; To draw conclusions regarding the effect of different constituents, mix designs and material properties upon the acoustic properties of the material; To build a model of the relationship between the acoustic properties of a cementitious material and its mix design via its physical/mechanical properties. In order to meet the aim, this research was conducted by employing the semi-experimental (half analytical) method: two experimental programmes were performed (I and II); a mathematical optimization technique (least square method) was then implemented in order to construct an optimized mathematical model to match with the experimental data. In Experimental Programme I, six constituents/factors were investigated regarding the effect on the physical/mechanical and acoustic properties: cementitious material additives (fly ash, silica fume, and GGBS), superplasticizer, and basic mix design parameters (w/c ratio, and sand grading). 11 properties (eight physical/mechanical properties: compressive strength, density, hardness, flexural strength, flexural modulus, elastic modulus, dynamic modulus and slump test; and three acoustic properties: resonant frequency, speed of sound and quality factor (internal damping)) were tested for each constituents/factors related mortar type. For each type of mortar, there were three cubes, three prisms and three cylinders produced. In Experimental Programme I, 20 mix designs were investigated, 180 specimens produced, and 660 test results recorded. After analysing the results of Experimental Programme I, fly ash (FA), w/b ratio and b/s ratio were selected as the cementitious material/factors which had the greatest influence on the acoustic properties of the material; these were subsequently investigated in detail in Experimental Programme II. In Experimental Programme II, various combinations of FA replacement level, w/b ratios and b/s ratios (three factors) resulted in 1122 test results. The relationship between these three factors on the selected 11 properties was then determined. Through using regression analysis and optimization technique (least square method), the relationship between the physical/mechanical properties and acoustic properties was then determined. Through both experimental programmes, 54 mix designs were investigated in total, with 486 specimens produced and tested, and 1782 test results recorded. Finally, based upon well-known existing relationships (including, model of compressive strength and elastic modulus, and the model of elastic modulus and dynamic modulus), and new regressioned models of FA-mortar (the relationship of compressive strength and constituents, which is unique for different mixes), the optimized object function of acoustic properties (speed of sound and damping ratio) and mix design (proportions of constituents) were constructed via the physical/mechanical properties.
Supervisor: Not available Sponsor: Loughborough University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.727713  DOI: Not available
Keywords: Cementitious materials ; Fly ash ; Mortar ; Acoustic properties ; Physical/mechanical properties ; Least square method ; Mathematical modelling
Share: