Title:

Threeloop soft anomalous dimension of massless multileg scattering

Infrared (IR) singularities are a salient feature of any field theory containing massless fields. In Quantum Chromodynamics (QCD), such singularities give rise to logarithmic corrections to physical observables. For many interesting observables, these logarithmic corrections grow large in certain areas of phase space, threatening the stability of perturbative expansion and requiring resummation. It is known, however, that IR singularities are universal and exponentiate, allowing one to study their allorder behaviour in any gauge theory by means of socalled webs: specific linear combinations of Feynman diagrams with modified colour factors corresponding to those of fully connected trees of gluons. Furthermore, infrared singularities factorise from the hard crosssection into soft and jet functions. The soft function may be calculated as a correlator of Wilson lines, vastly simplifying the computation of IR poles and allowing analytic computation at high loop order. Renormalisation group equations then allow the definition of a soft anomalous dimension, which may then be directly computed either through differential equations or by a direct, diagrammatic method. Soft singularities are highly constrained by rescaling symmetry, factorisation, Bose symmetry, and high energy and collinear limits. In the case of lightlike external partons, this leads directly to a set of constraint equations for the soft anomalous dimension, the simplest solution of which is a sum over colour dipoles. At two loops, this socalled dipole formula is the only admissible solution, leading to the complete cancellation of any tripole colour structure. Corrections beyond the dipole formula may first be seen at three loops, and must take the form of weight five polylogarithmic functions of conformal invariant crossratios, correlating four hard jets through a quadrupole colour structure. In this thesis we calculate this first correction beyond the dipole formula by considering threeloop multiparton webs in the asymptotic limit of lightlike external partons. We do this by computing all relevant webs correlating two, three and four lines at three loop order by means of an asymptotic expansion of MellinBarnes integrals near the limit of lightlike external partons. We find a remarkably simple result, expressible entirely in terms of Brown's singlevalued harmonic polylogarithms, consistent with highenergy and forward scattering limits. Finally, we study the behaviour of this correction in the limit of two partons becoming collinear, and discuss collinear factorisation properties.
