Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723333
Title: Functionalisation of metal-organic frameworks via post-synthetic modification
Author: Amer Hamzah, Harina
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis is built upon two areas of research concerning metal-organic frameworks (MOFs). The first focuses on the functionalisation of MOFs via post-synthetic modification (PSM). The second involves the investigation on the potential of MOFs as hosts for insect pheromones. Chapter 1 introduces the field of MOF chemistry, and covers their properties along with a brief description of their applications. The concept of PSM is introduced and a review of recent literature given. The aims of the thesis are also detailed at the end of this chapter. Chapter 2 describes the PSM of [Zr6O4(OH)4(BDC-NH2)6], UiO-66-NH2, via Aza-Michael reactions. Different functionalities were successfully introduced into its pores and the degrees of conversion were determined via 1H NMR spectroscopy. Gas sorption measurements (CO2 and N2) of the PSM products were carried out and compared. In particular, two PSM products were shown to exhibit higher CO2 over N2 selectivity than that for the starting MOF, UiO-66-NH2. Chapter 3 describes a new PSM route in obtaining azole-functionalised MOFs via Mannich reactions. The amino groups in three different MOFs were converted into a range of azole-functionalised MOFs with conversions up to 100%. In particular, one of the PSM reactions afforded a new material, formulated as [Zn3(BDC-NH2)1.32(BDC-NHCH2N2C3H3)1.68(C6H12N2)], based on single crystal X-ray crystallography, 1H NMR and TGA analyses. Gas sorption studies demonstrate increased selectivity for CO2 over N2 for the PSM products. One of the modified MOFs was shown to exhibit a high Hg(II) uptake from aqueous solutions. Chapter 4 introduces the concept of using MOFs as hosts for ant pheromones. The factors which influenced the pheromone loading in zinc and zirconium based MOFs were investigated. The MOFs containing the linker BDC-NHPr (2-(propylamino)benzene-1,4-dicarboxylate) were found to be effective at hosting two types of ant pheromones, 3-octanone and (S)-4-methyl-3-heptanone.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.723333  DOI: Not available
Share: