Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.722217
Title: Analyses of the early stages of star formation
Author: Lintott, Christopher John
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2006
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis presents a study of the physical and chemical properties of star forming regions, both in the Milky Way and in the distant Universe, building on the existing astrochem- ical models developed by the group at UCL. Observations of the nearby star-forming region, L134A, which were carried out with the James Clark Maxwell Telescope (JCMT) in Hawai'i are compared to the predictions of a model of star formation from gas rich in atomic (rather than molecular) hydrogen. A similar model is used to investigate the effect of non-equilibrium chemistry on the derivation of the cosmic-ray ionization rate, an important parameter in controlling both the chemistry and the physics of star forming clumps. A collapse faster than free-fall is proposed as an explanation for differences be tween the distribution of CS and N2H+ in such regions. Moving beyond the Milky Way, JCMT observations of sulphur-bearing species in the nearby starburst galaxy, M82, are presented and compared with existing molecular observations of similar systems. M82 is a local anlogue for star forming systems in the early Universe, many of which have star formation rates several thousand times that of the Milky Way. A model which treats the molecular gas in such systems as an assembly of 'hot cores' (protostellar cores which have a distinctive chemical signature) has been developed, and is used to predict the abundance of many species. An application of this model is used to explain the observed deviation in the early Universe from the otherwise tight relation between infrared and HCN luminosity via relatively recent star formation from near-primordial gas. Many of the stars formed in the early Universe must now be in massive elliptical systems, and work on the structure of these systems is presented. Data from the Sloan Digital Sky Survey is analysed to show that such galaxies have cores dominated by baryons rather than dark matter, and the dark matter profile is constrained by adiabatic contraction.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.722217  DOI: Not available
Share: