Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.722064
Title: TV white space and broadband power line communications for indoor high speed networks
Author: Heggo, M. A.
Awarding Body: University of Liverpool
Current Institution: University of Liverpool
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Current indoor networks have growing data rate demands to satisfy high speed applications. Broadband power line communications (BPLC) and TV white space (TVWS) communications are considered as effective solutions for indoor networks. However, they encounter several challenges concerning coexistence with wireless services. In this thesis, cooperative BPLC and TVWS is investigated in the very high frequency (VHF) band, for the aim of complementing each other to deliver enhanced performance. The main contributions of the thesis are multi-folds. In the first contribution, a general statistical based path loss mapping (GSBPL) approach is proposed for modelling the path loss of indoor low voltage (i.e. 220 v) BPLC. Also, a simplification method is proposed for computing the channel transfer function, which is proved to be more general and computationally more efficient than the previous method in literature. The feasibility of the cooperation between BPLC and wireless communications is thus concluded, through comparing their corresponding path losses. In the second contribution, a general model is proposed to map the TVWS interference with the BPLC in the VHF band, through exciting antenna mode currents along low voltage BPLC cables. A new model is presented for current conversion from antenna to differential mode, which includes a general formula for the antenna mode characteristic impedance and two solutions to the formulated problem: a) a numerical solution referred to as the antenna theory numerical (ATN) approach; b) an analytical solution referred to as the enhanced TL approximation (ETLA) approach. This is the first reported work to obtain the antenna mode characteristic impedance by the antenna theory. The ETLA approach outperforms the previous frequency-independent solution and requires a reduced complexity over the ATN approach. In the third contribution, new hybrid systems utilising BPLC and TVWS are proposed in the VHF band referred to as white BPLC (WBPLC). Two cases are considered in the proposed system: a) point-to-point WBPLC multiple-input multiple-output (MIMO) system, where a power allocation algorithm and an iterative precoding technique are proposed to maximise the ergodic capacity, subject to the constraints of total power and interference limit at the TV primary user (PU) receiver (Rx); b) point-to-multipoint WBPLC MIMO system. The overall network downlink capacity maximisation problem is investigated, using an efficient algorithm for power and subcarrier allocation among different users.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.722064  DOI: Not available
Share: