Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.722002
Title: Old and new targets in antimalarial drug discovery
Author: Roberts, N. J.
Awarding Body: University of Liverpool
Current Institution: University of Liverpool
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The increasing emergence of resistance to commonly used therapies has placed a huge strain on the prevention and control of malaria; therefore, there is an urgent need to develop novel antimalarial agents. The aim of this research was to design and synthesise a library of potent antimalarial compounds, with desirable pharmacokinetic profiles, in order to identify a drug candidate suitable for preclinical development. This research was divided into two main sections: x The synthesis of compounds deigned to inhibit IspD, a novel target in antimalarial drug discovery x The late stage development of a series of endoperoxide-based antimalarials, which are derived from the structure of artemisinin A library of benzisothiazolinone compounds was generated to target the IspD enzyme. Many of these compounds displayed low micromolar inhibitory activity against both enzymatic and phenotypic assays in vitro and an investigation into structure-activity relationships around the core of these benzisothiazolinones was also conducted. The most potent compound to emerge, a CH2 linked benzisoselenazolone, had an IC50 of 0.17 μM against PfIspD and 5.54 μM against Pf3D7. These compounds represent a novel class of IspD inhibitor, which have the potential for further development as antimalarial agents. A number of 1,2,4,5-tetraoxane analogues were also prepared in order to develop an antimalarial agent suitable for a single-dose cure. The most potent analogue, N205, had an IC50 of 1.3 nM and an average mouse survival of 26.3 days (66% cure rate) following a single dose. A less than optimal stability profile for N205 led to the further development of another potent tetraoxane analogue, E209. Optimisation of the synthetic pathway led to the generation of E209 in a series of five high-yielding steps that are suitable for large-scale production. E209 represents the first 1,2,4,5-tetraoxane that is comparable, in terms of both efficacy and PK/PD profiles, to OZ439, and is a candidate for pre-clinical development.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.722002  DOI: Not available
Share: