Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.721387
Title: The Plant Propagation Algorithm for discrete optimisation
Author: Selamoglu, Birsen Irem
Awarding Body: University of Essex
Current Institution: University of Essex
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 14 Aug 2020
Access from Institution:
Abstract:
The thesis is concerned with novel Nature-Inspired heuristics for the so called NP-hard problems of optimisation. A particular algorithm which has been recently introduced and shown to be effective in continuous optimisation is the Plant Propagation Algorithm or PPA. Here, we intend to extend it to cope with combinatorial optimisation. In order to show that our extension is viable and effective, we consider three types of problems which are good representatives of the whole topic. These are the Travelling Salesman Problem or TSP, the Knapsack Problem or KP and the scheduling problem of Berth Allocation as arises in container ports or BAP. Because PPA is a population-based search heuristic, we devote a chapter to the important issue of generating good and yet computationally relatively light initial populations of solutions to kick start the search process. In the case of the TSP we revisit and extend the Strip Algorithm (SA). We introduce the 2-Part SA and show that it is better than the classical SA. We also introduce new variants such as the Adaptive SA and the Spiral SA which cope with clustered cities and instances with cities concentrated around the center of the unit square, respectively. In the case of KP we adapt the Roulette Wheel selection approach to generate solutions to start with PPA. And in the case of BAP, we introduce a number of simple heuristics which consider a schedule as a flat box with one side being the processing time and the other the position of vessels on the wharf. The heuristics try to generate schedules by avoiding overlap as much as possible. All approaches and algorithms are implemented and tested against well established algorithms. The results are recorded and discussed extensively. The thesis ends with a conclusion and ideas for further research.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.721387  DOI: Not available
Keywords: QA Mathematics
Share: