Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.721233
Title: Investigating the role of optineurin in bone biology and Paget's disease of bone
Author: Obaid, Rami Abdulhadi Abdulmajeed
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Paget’s disease of bone (PDB) is a common disease with a strong genetic component. Approaches such as linkage analysis and candidate gene studies have shown that mutations in Sequestosome 1 (SQSTM1) explain up to 40% of familial cases and 10% of sporadic cases, however the majority of PDB patients have no mutations in this gene. Genome-wide association studies (GWAS) have recently identified new susceptibility loci for PDB including variants at CSF1, TNFRSF11A, OPTN, TM7SF4, PML, NUP205 and RIN3 loci. These loci were confirmed to be associated with PDB in various European populations. OPTN encodes optineurin, a widely expressed protein involved in many cellular processes but its role in bone metabolism is yet unknown. The aim of this PhD thesis was to investigate the role of OPTN in bone metabolism and PDB using in vitro and in vivo studies. In chapter 3, the OPTN rs1561570 identified by previous GWAS was examined for its association with the severity and clinical outcome of PDB in patients without SQSTM1 mutations. The results showed that rs1561570 was significantly associated with total disease severity score so that carriers of the risk allele “T” had higher severity score compared to non-carriers (P < 0.05). A trend for reduced quality of life physical scores (SF36) was also associated with the rs1561570 risk allele, but the relationship was not statistically significant. In order to identify functional variants within OPTN, the coding regions as well as the exon-intron boundaries were sequenced in 24 familial PDB cases and 19 controls. No mutation was found that could be predicted as pathogenic suggesting that disease susceptibility could be mediated by regulatory polymorphisms that influence gene expression. In chapter 4, the role of OPTN was investigated in osteoclast development using in vitro knockdown experiments. Optn was expressed in mouse bone marrow derived macrophages (BMDMs) as well as all stages of osteoclast development and it was significantly increased three days post RANKL treatment. Optn expression was knocked down in BMDMs and cells were induced to form osteoclast in the presence of RANKL and M-CSF. Compared to non-targeted cells, Optn depleted cells formed significantly more and larger osteoclasts (P< 0.05). Optn knockdown was also found to enhance osteoclast survival as well as RANKL-induced NFκB activation. In chapter 5, the role of OPTN was investigated in vitro from cells obtained from knock in mice with a loss-of-function mutation in Optn (OptnD477N/D477N). In agreement with the in vitro knockdown experiments, osteoclasts were significantly higher and larger in mutant mice compared to WT and the NF-B activity measured by luciferase reporter assay was significantly higher in cells from OptnD477N/D477N compared to WT during most stages of osteoclast development. OPTN from mutant and WT mice was co-precipitated with its CYLD binding-partner, which acts as a negative regulator to RANK signalling by inhibiting the TRAF6 downstream signalling. The data from this immunoprecipitation (IP) experiment revealed that defective OPTN interacted less with CYLD from mutant mice compared to WT. This study also showed that OPTN was expressed in osteoblasts and the expression rate did not change during osteoblast development. The data obtained from the mineralization assay revealed no significant difference between OptnD477N/D477N and WT. In chapter 6, I investigated the effect of the D477N loss of function mutation in Optn on bone metabolism. Bone Histomorphometrical analysis of OptnD477N/D477N mice showed higher bone resorption parameters (Oc.N/BS and Oc.S/BS) compared to wild type (WT). Osteoid analysis showed evidence of increased bone formation parameters (OS/BS and OV/BV) in mutant mice compared to WT. Calcein labelling showed a significant difference in mineral apposition rate (MAR) from mutant mice compared to WT. Analysis of serum biomarkers of bone turnover showed evidence of enhanced bone turnover in mutant mice compared to WT. Micro computed tomography (μCT) analysis of 4 and 14 months old mice showed no significant differences in bone morphology between WT and OptnD477N/D477N mice of both sexes. In conclusion, this study has shown for the first time that OPTN plays a role in regulating bone turnover by acting as a negative regulator of osteoclast differentiation. The data obtained from this study strongly suggest the crucial role of OPTN in RANK signalling. The effect of OPTN on osteoblast activity may be direct or indirect compensation for increased osteoclast activity. Further detailed studies will be required to explore the underlying mechanism of OPTN including downstream RANK signalling and a complete knockout model to corroborate these findings.
Supervisor: Albagha, Omar ; Ralston, Stuart Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.721233  DOI: Not available
Keywords: Paget’s disease of bone ; optineurin ; bone metabolism ; osteoclast differentiation ; OPTN ; osteoclast activity
Share: