Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.721149
Title: Evolutionary and therapeutic consequences of phenotypic heterogeneity in microbial populations
Author: Lowery, Nicholas Craig
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The historical notion of a microbial population has been of a clonal population of identical swimming planktonic cells in a laboratory flask. As the field has advanced, we have grown to appreciate the immense diversity in microbial behaviors, from their propensity to grow in dense surface-attached communities as a biofilm, to the consequences of social dilemmas between cells, to their ability to form spores able to survive nearly any environmental insult. However, the historically biased view of the clonal microbial population still persists – even when a rare phenotype is investigated, the focus simply shifts to that narrower focal population - and this bias can lead to some of the broader questions relating to the consequences of phenotypic diversity within populations to be overlooked. This work seeks to address this gap by investigating the evolutionary causes and consequences of phenotypic heterogeneity, with a focus on clinically relevant phenotypes. We first develop and experimentally validate a theoretical model describing the evolution of a microbial population faced with a trade-off between survival and fecundity phenotypes (e.g. biofilm and planktonic cells), which suggests that simultaneous investment in both types maximizes lineage fitness in heterogeneous environments. This model helps to inform the experimental studies in the following chapters. We find that biofilm-mediated phenotypic resistance to antibiotics is evolutionarily labile, and responsive to antibiotic dose and whether biofilm or planktonic cells are passaged. We also show that persistence in E. coli is age-independent, supporting the current hypothesis of stochastic metabolic fluctuations as the cause of this rare phenotype. Finally, we explore phenotypic variation across a library of natural isolates of P. aeruginosa, and find few organizing principles among key phenotypes related to virulence. Together these results suggest that phenotypic heterogeneity is a crucial component in the ecology and evolution of microbial populations, and directly affects pressing applied concerns such as the antibiotic resistance crisis.
Supervisor: Brown, Sam ; French, Chris Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.721149  DOI: Not available
Keywords: phenotypic heterogeneity ; Pseudomonas aeruginosa ; persister ; biofilm ; evolution ; antibiotics
Share: