Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720981
Title: Dynamic rule covering classification in data mining with cyber security phishing application
Author: Qabajeh, Issa Mohammad
Awarding Body: De Montfort University
Current Institution: De Montfort University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Data mining is the process of discovering useful patterns from datasets using intelligent techniques to help users make certain decisions. A typical data mining task is classification, which involves predicting a target variable known as the class in previously unseen data based on models learnt from an input dataset. Covering is a well-known classification approach that derives models with If-Then rules. Covering methods, such as PRISM, have a competitive predictive performance to other classical classification techniques such as greedy, decision tree and associative classification. Therefore, Covering models are appropriate decision-making tools and users favour them carrying out decisions. Despite the use of Covering approach in data processing for different classification applications, it is also acknowledged that this approach suffers from the noticeable drawback of inducing massive numbers of rules making the resulting model large and unmanageable by users. This issue is attributed to the way Covering techniques induce the rules as they keep adding items to the rule’s body, despite the limited data coverage (number of training instances that the rule classifies), until the rule becomes with zero error. This excessive learning overfits the training dataset and also limits the applicability of Covering models in decision making, because managers normally prefer a summarised set of knowledge that they are able to control and comprehend rather a high maintenance models. In practice, there should be a trade-off between the number of rules offered by a classification model and its predictive performance. Another issue associated with the Covering models is the overlapping of training data among the rules, which happens when a rule’s classified data are discarded during the rule discovery phase. Unfortunately, the impact of a rule’s removed data on other potential rules is not considered by this approach. However, When removing training data linked with a rule, both frequency and rank of other rules’ items which have appeared in the removed data are updated. The impacted rules should maintain their true rank and frequency in a dynamic manner during the rule discovery phase rather just keeping the initial computed frequency from the original input dataset. In response to the aforementioned issues, a new dynamic learning technique based on Covering and rule induction, that we call Enhanced Dynamic Rule Induction (eDRI), is developed. eDRI has been implemented in Java and it has been embedded in WEKA machine learning tool. The developed algorithm incrementally discovers the rules using primarily frequency and rule strength thresholds. These thresholds in practice limit the search space for both items as well as potential rules by discarding any with insufficient data representation as early as possible resulting in an efficient training phase. More importantly, eDRI substantially cuts down the number of training examples scans by continuously updating potential rules’ frequency and strength parameters in a dynamic manner whenever a rule gets inserted into the classifier. In particular, and for each derived rule, eDRI adjusts on the fly the remaining potential rules’ items frequencies as well as ranks specifically for those that appeared within the deleted training instances of the derived rule. This gives a more realistic model with minimal rules redundancy, and makes the process of rule induction efficient and dynamic and not static. Moreover, the proposed technique minimises the classifier’s number of rules at preliminary stages by stopping learning when any rule does not meet the rule’s strength threshold therefore minimising overfitting and ensuring a manageable classifier. Lastly, eDRI prediction procedure not only priorities using the best ranked rule for class forecasting of test data but also restricts the use of the default class rule thus reduces the number of misclassifications. The aforementioned improvements guarantee classification models with smaller size that do not overfit the training dataset, while maintaining their predictive performance. The eDRI derived models particularly benefit greatly users taking key business decisions since they can provide a rich knowledge base to support their decision making. This is because these models’ predictive accuracies are high, easy to understand, and controllable as well as robust, i.e. flexible to be amended without drastic change. eDRI applicability has been evaluated on the hard problem of phishing detection. Phishing normally involves creating a fake well-designed website that has identical similarity to an existing business trustful website aiming to trick users and illegally obtain their credentials such as login information in order to access their financial assets. The experimental results against large phishing datasets revealed that eDRI is highly useful as an anti-phishing tool since it derived manageable size models when compared with other traditional techniques without hindering the classification performance. Further evaluation results using other several classification datasets from different domains obtained from University of California Data Repository have corroborated eDRI’s competitive performance with respect to accuracy, number of knowledge representation, training time and items space reduction. This makes the proposed technique not only efficient in inducing rules but also effective.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.720981  DOI: Not available
Share: