Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720704
Title: Mixing of viscoelastic fluids
Author: Ramsay, John Andrew
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Jul 2021
Access from Institution:
Abstract:
This work investigates the laminar mixing performance of viscoelastic fluids in laboratory-scale batch stirred tanks agitated by “butterfly” impellers and in-line Kenics KM static mixers. Constant-viscosity viscoelastic (Boger) fluids were formulated to investigate viscous and elastic effects separately; multiphase viscoelastic suspensions were formulated from 40-50 volume% glass spheres in glycerol. Particle Image Velocimetry in stirred tanks agitated by high impeller-to-tank diameter ratio butterfly impellers (D/T=0.98) showed that secondary flows in Boger fluid increased solid body rotation and reduced local shear rates (≤16 s-1) compared to equivalent viscosity Newtonian fluids, though the effect was non-monotonic. Mixing times obtained from Planar Laser Induced Fluorescence (PLIF) increased by ≤23%. Positron Emission Particle Tracking in multiphase suspensions showed increased axial mixing due to more dominant secondary flows. In static mixers, Boger fluid striation patterns at the mixer outlet obtained from PLIF showed time dependence and flow instability due to reduced local shear rates. Energy consumption in all geometries displayed an increase of ≤200% with viscoelastic fluids. Using a generalised Reynolds number Reg enabled viscoelastic power draw prediction, previously only possible through empirical relationships. Overall, viscoelasticity generally increases energy consumption whilst reducing blending performance though the link between elasticity and mixing quality is highly non-linear.
Supervisor: Not available Sponsor: Engineering and Physical Sciences Research Council (EPSRC) ; Johnson Matthey
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.720704  DOI: Not available
Keywords: TP Chemical technology
Share: