Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720698
Title: Processing and properties of titanium metal matrix composites
Author: Pollard, Sarah Louise
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2026
Access from Institution:
Abstract:
This thesis addresses aspects of the development of both processing methods and the assessment of the mechanical properties of titanium metal matrix composites in order for the material to be introduced with confidence into aero-engine applications. Assessment of the SM1140+ fibre has been carried out and compared with the SCS-6 and Trimarc fibres in order to gain an appreciation of the performance of these fibres in relation to each other to aid fibre selection and to aid further development of composite components. The SM1140+ fibre is found to fail almost always from the core and is consistent with a statistical distribution that can be modelled by a unimodal Weibull approach. The development of the SM2156 fibre was made in an effort to produce both a UK source and a lower cost source of fibre. Mechanical testing of fibre in both as-received and composite form revealed a decrease in strength when compared with results for the virgin, uncoated fibre and by deduction from SCS-6 composite mechanical behaviour. The deterioration of fibre properties appears to be caused by the rough surface of the SiC fibre causing a ‘keying’ effect that inhibits interfacial sliding. The high rate sputtering deposition process has been developed in order to obtain an alternative, lower cost method of producing matrix coated fibre. Testing of the MCF showed a mild deterioration of fibre strength during processing (due to fibre spooling), but still demonstrated the composite shows potential for production given further development.
Supervisor: Not available Sponsor: Rolls-Royce plc ; Engineering and Physical Sciences Research Council
Qualification Name: Thesis (D.Eng.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.720698  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: