Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.719794
Title: Investigating exoplanets and transients using small-aperture telescopes
Author: Busuttil, Richard
Awarding Body: Open University
Current Institution: Open University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This work characterises PIRATE’s primary camera, the SBIG STX-16803, as well as assessing the usefulness and impact of a small-aperture semi-autonomous facility in Mallorca for exoplanet studies and studies of transient sources. Additionally, a method for exploring the Roche lobe of an exoplanet and the effects this has on the shape and density of the planet is also described. PIRATE is a small aperture photometric facility that can be operated remotely or autonomously, is constructed from commercially available hardware and utilised by The Open University for research, education and outreach. The camera gain measurements are within the manufacturer specifications while the read noise deviates quite significantly. The camera shutter is also verified to evenly illuminate the CCD which may be suffering from a form of residual image. Regarding exoplanets, PIRATE has helped to identify 108 false positives as well as 24 real and plausible planets. Combined, this is 67% of PIRATE’s total exoplanet candidate observations. Several of these targets are explored in further detail. Still on the subject of exoplanets, Roche calculations are applied to 207 known exoplanets and highlight that WASP-12b, WASP-19b and WASP-103b are likely to have strong distortions from a spherical shape. Look-up charts were also generated for mass ratios of 10^-6 through to 10^-1. These look-up charts are intended to provide a quick reference volume correction to exoplanets (or any other system of similar mass ratios). As part of the Gaia transient preparatory and to demonstrate the capabilities of PIRATE, SN 2014J is provided as an example. A peak B apparent magnitude, Bmax of 11.80 +/- 0.14 mag is observed at a tmax of 56690.79 +/- 0.01 MJD and provides Dm15 = 0.98 +/- 0.20 mag. A peak E(B-V) extinction of 1.24 +/- 0.16 mag (E(B-V)host = 1.19 +/- 0.16 mag) is determined.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.719794  DOI: Not available
Share: